soundpointsgenerators

digraph InheritanceGraph { graph [bgcolor=transparent, color=lightsteelblue2, fontname=Arial, fontsize=10, outputorder=edgesfirst, overlap=prism, penwidth=2, rankdir=LR, splines=spline, style="dashed, rounded", truecolor=true ]; node [colorscheme=pastel19, fontname=Arial, fontsize=10, height=0, penwidth=2, shape=box, style="filled, rounded", width=0 ]; edge [color=lightslategrey, penwidth=1 ]; subgraph cluster_builtins { graph [label=builtins]; node [color=1]; "builtins.object" [URL="https://docs.python.org/3.9/library/functions.html#object", label=object, target=_top]; } subgraph "cluster_pang.soundpointsgenerators" { graph [label="pang.soundpointsgenerators"]; node [color=2]; "pang.soundpointsgenerators.AtaxicSoundPointsGenerator" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.AtaxicSoundPointsGenerator", color=black, fontcolor=white, label="Ataxic\nSound\nPoints\nGenerator", target=_top]; "pang.soundpointsgenerators.GRWSoundPointsGenerator" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.GRWSoundPointsGenerator", color=black, fontcolor=white, label="GRWSound\nPoints\nGenerator", target=_top]; "pang.soundpointsgenerators.ManualSoundPointsGenerator" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.ManualSoundPointsGenerator", color=black, fontcolor=white, label="Manual\nSound\nPoints\nGenerator", target=_top]; "pang.soundpointsgenerators.RandomWalkSoundPointsGenerator" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.RandomWalkSoundPointsGenerator", color=black, fontcolor=white, label="Random\nWalk\nSound\nPoints\nGenerator", target=_top]; "pang.soundpointsgenerators.SoundPoint" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.SoundPoint", color=black, fontcolor=white, label="Sound\nPoint", target=_top]; "pang.soundpointsgenerators.SoundPointsGenerator" [URL="../api/pang/soundpointsgenerators.html#pang.soundpointsgenerators.SoundPointsGenerator", color=black, fontcolor=white, label="Sound\nPoints\nGenerator", target=_top]; "pang.soundpointsgenerators.SoundPointsGenerator" -> "pang.soundpointsgenerators.AtaxicSoundPointsGenerator" [minlen=1]; "pang.soundpointsgenerators.SoundPointsGenerator" -> "pang.soundpointsgenerators.GRWSoundPointsGenerator" [minlen=2]; "pang.soundpointsgenerators.SoundPointsGenerator" -> "pang.soundpointsgenerators.ManualSoundPointsGenerator" [minlen=1]; "pang.soundpointsgenerators.SoundPointsGenerator" -> "pang.soundpointsgenerators.RandomWalkSoundPointsGenerator" [minlen=2]; } "builtins.object" -> "pang.soundpointsgenerators.SoundPoint" [minlen=1]; "builtins.object" -> "pang.soundpointsgenerators.SoundPointsGenerator"; }


Classes

AtaxicSoundPointsGenerator

Ataxic sound points generator.

GRWSoundPointsGenerator

Gaussian (sampled) random walk sound points generator.

ManualSoundPointsGenerator

Manual sound-point generator.

RandomWalkSoundPointsGenerator

Sound points generator, with pitches chosen with a random walk process.

SoundPoint

SoundPoint / Event.

SoundPointsGenerator

Abstract base sound-point generator.

class pang.soundpointsgenerators.AtaxicSoundPointsGenerator(arrival_rate=1, service_rate=1, pitch_set=[0], arrival_model='markov', service_model='markov', seed=123456, order='idp')

Ataxic sound points generator.

Initializing an ataxic cloud.

>>> pitch_set = list(range(24))
>>> sound_points_generator = pang.AtaxicSoundPointsGenerator(
...     pitch_set=pitch_set,
... )
>>> sequence = pang.Sequence(
...     sound_points_generator=sound_points_generator,
...     sequence_duration=4,
... )
>>> sequence.simulate_queue()
>>> server = sequence.servers[0]
>>> q_event_sequence = server.q_event_sequence
>>> quantizer = nauert.Quantizer()
>>> optimizer = nauert.MeasurewiseAttackPointOptimizer()
>>> result = quantizer(q_event_sequence, attack_point_optimizer=optimizer)
>>> abjad.show(result)  

Special methods

(SoundPointsGenerator).__call__(sequence_duration)

Call self as a function.

(SoundPointsGenerator).__repr__()

Gets interpreter representation.

class pang.soundpointsgenerators.GRWSoundPointsGenerator(arrival_rate=1, service_rate=1, arrival_model='markov', service_model='markov', pitch_set=[0], origin=None, mean=0, standard_deviation=1, seed=123456, order='idp')

Gaussian (sampled) random walk sound points generator.

>>> pitch_set = list(range(20))
>>> sound_points_generator = pang.GRWSoundPointsGenerator(
...     pitch_set=pitch_set,
... )
>>> sequence = pang.Sequence(
...     sound_points_generator=sound_points_generator,
...     sequence_duration=4,
... )
>>> sequence.simulate_queue()
>>> server = sequence.servers[0]
>>> q_event_sequence = server.q_event_sequence
>>> quantizer = nauert.Quantizer()
>>> optimizer = nauert.MeasurewiseAttackPointOptimizer()
>>> result = quantizer(q_event_sequence, attack_point_optimizer=optimizer)
>>> abjad.show(result)  

Special methods

(SoundPointsGenerator).__call__(sequence_duration)

Call self as a function.

(SoundPointsGenerator).__repr__()

Gets interpreter representation.

class pang.soundpointsgenerators.ManualSoundPointsGenerator(instances=[], durations=[], pitches=None)

Manual sound-point generator.

Initializing a sequence manually.

>>> instances = [0, 1, 2, 3]
>>> durations = [1, 1, 0.5, 0.5]
>>> sound_points_generator = pang.ManualSoundPointsGenerator(
...     instances=instances,
...     durations=durations,
... )
>>> sequence = pang.Sequence(
...     sound_points_generator=sound_points_generator,
... )
>>> print(sequence.instances)
[0, 1, 2, 3]
>>> print(sequence.durations)
[1, 1, 0.5, 0.5]
>>> print(sequence.sequence_duration)
3.5
>>> sequence.simulate_queue()
>>> server = sequence.servers[0]
>>> q_event_sequence = server.q_event_sequence
>>> quantizer = nauert.Quantizer()
>>> optimizer = nauert.MeasurewiseAttackPointOptimizer()
>>> result = quantizer(q_event_sequence, attack_point_optimizer=optimizer)
>>> abjad.show(result)  

Attributes Summary

__call__

Call self as a function.


Special methods

overridden __call__(sequence_duration)

Call self as a function.

(SoundPointsGenerator).__repr__()

Gets interpreter representation.

class pang.soundpointsgenerators.RandomWalkSoundPointsGenerator(arrival_rate=1, service_rate=1, arrival_model='markov', service_model='markov', pitch_set=[0], origin=None, seed=123456, order='idp')

Sound points generator, with pitches chosen with a random walk process.

Initializing an ataxic cloud.

>>> pitch_set = list(range(20))
>>> sound_points_generator = pang.RandomWalkSoundPointsGenerator(
...     pitch_set=pitch_set,
... )
>>> sequence = pang.Sequence(
...     sound_points_generator=sound_points_generator,
...     sequence_duration=4,
... )
>>> sequence.simulate_queue()
>>> server = sequence.servers[0]
>>> q_event_sequence = server.q_event_sequence
>>> quantizer = nauert.Quantizer()
>>> optimizer = nauert.MeasurewiseAttackPointOptimizer()
>>> result = quantizer(q_event_sequence, attack_point_optimizer=optimizer)
>>> abjad.show(result)  

Special methods

(SoundPointsGenerator).__call__(sequence_duration)

Call self as a function.

(SoundPointsGenerator).__repr__()

Gets interpreter representation.

class pang.soundpointsgenerators.SoundPoint(instance, duration, pitch)

SoundPoint / Event.


Attributes Summary

duration

instance

pitch


Read/write properties

duration
instance
pitch
class pang.soundpointsgenerators.SoundPointsGenerator

Abstract base sound-point generator.


Attributes Summary

__call__

Call self as a function.

__repr__

Gets interpreter representation.


Special methods

overridden __call__(sequence_duration)

Call self as a function.

overridden __repr__()

Gets interpreter representation.